Buried perennial ice at low latitudes on Mars: Implications for the MSL Landing Sites

Jack Mustard, Mathieu Vincendon, François Forget, Mikhail Kreslavsky, Aymeric Spiga, Scott Murchie, Jean-Pierre Bibring

- Water ice may be buried to very low latitudes
- Remnants of previous glacial eras or ongoing vapor diffusion
- Important to assess relevance to MSL Landing sites

Expanding Evidence for Buried Water Ice in Mid-Latitudes

- Recent impacts excavate mid-latitude ground ice that sublimates in a few months
- Predicted by models and show the most equator-ward presence of water ice in the near surface (41° N)

Byrne et al., Distribution of Mid-Latitude Ground Ice on Mars from New Impact Craters, Science 325. no. 5948, pp. 1674 - 1676, 2009

Sharad is mapping vast regions of buried ice in the mid-latutudes, south pole region, and elsewhere Ancient ice deposited during past climate excursion

Plaut et al.,, 2010, Kress et al., 2010

Detection of present-day surface frosts using diagnostic vibrational absorptions present in Near-IR observations (OMEGA & CRISM)

Global integrated observations of surface frosts at low/mid latitudes with OMEGA and CRISM

- H₂O ice
- ♦ CO₂ ice

Are these observations consistent with Model Calculations of H₂O and CO₂ ice stability?

We combine:

 the 1D model designed for surface slopes

seasonal maps from the3D GCM

Water vapor pressure:

Clouds → *Precipitation*:

(Figures from Montmessin et al., 2004)

Model compared to observations

Water ice: OK

- Observations (Water ice)
- Model (thickness threshold: 5 μm / 2 μm)

Model compared to observations CO₂ ice: not OK

Model compared to observations (CO₂ ice)

A source of heat localized on slopes is required

Different assumptions for model parameters

Ground model: dry regolith above H₂O ice rich regolith

Ice table depth: free parameter, latitude dependent

Eberswalde W of Center

Kirk, 5th Landing Site Workshop

Kirk, 5th Landing Site Workshop

Mawrth2 W of Center

Implications for MSL Landing Sites

- This observational evidence for perennial water ice in the shallow subsurface (< 1 m) down to the tropic (25°S) is consistent with models (e.g. Aharonson and Schorghofer 2006)
- These ice reservoirs are with the latitude range of Holden, Mawrth and Eberswalde
- This could affect operational procedures and the clumping/texture/ aggregation of soils (e.g. Viking and Phoenix)

